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Abstract. We present the theoretical radiation of a strongly coupled electron-proton plasma 
(ne = 10" ~ m - ~ ,  T between 55 eV and 200 eV). Quantum effects are introduced by calculat- 
ing the Slater sum of the binary e-p system and deriving an effective potential from it. 
A classical treatment of the e-p collision is then possible and the Larmor formula gives 
the associated radiation. The power spectrum exhibits a low-frequency maximum up to 
50% higher than the classical bremsstrahlung, and a more rapid decrease at high frequencies. 

1. Introduction 

The radiation of a dense plasma, even slightly non-ideal, is not well known, but its 
evaluation is needed to describe the energetic equilibrium of this medium. Such plasmas 
have been extensively studied but neglecting the effects of radiation. The state of the 
art has been fixed up by Deutsch et a1 (1981). We present here a model that includes 
quantum effects into an effective proton-electron potential. The classical treatment of 
the collision and of the radiation gives us an expression for the total radiated energy 
and for the power spectrum. 

The plasma we are dealing with is a proton and electron one ( n e  = ni = loz1 ~ m - ~ )  
at a relatively high temperature (6 x 10SK< T < 2 x lo6 K). Table 1 summarises the 
parameters of this plasma in the temperature range, the interparticle distance d, the 
Debye length A D  and associated number of particles nD in the Debye sphere, the de 
Broglie wavelength A B  of the electron-proton system, the Landau length Id and the 
ideality parameter r = l d / d .  

From the A B  values, it appears that a quantum treatment is necessary. We introduce 
the Slater sum formalism, analogous to the classical Boltzmann factor in statistical 
mechanics (Landsberg 1971). In a first approximation we restrict ourselves to a binary 
short-range proton-electron interaction, so the effective potential 4 derived from Slater 
sums has a mechanical meaning. The derivative -a4/ar constitutes the real mechanical 
force related to the situation of an electron in this environment ( Balescu 1976, p 245). This 
force will allow us to classically calculate the radiation of an electron colliding with a 
proton at a distance no larger than AB. 

To solve the radiation problem, Valuev and Kurilenkov (1981) have studied a 
slightly different plasma ( n e  = 10" to 10'' ~ m - ~ ,  T = lo" K). The trajectory of the 
electron was a classical hyperbola around each proton leading to a Larmor radiation. 
The density effect was treated by a spectral absorption coefficient derived from the 
velocity autocorrelation function of the protons. The authors have noted that an 
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Table 1. Parameters of the electron-proton plasma for two typical temperatures. 

T ( K )  d (A)  A D ( A )  n, A B ( A )  [,(A) r 

5 x 10' 4.9 15.5 15.7 1.05 0.34 0.069 
1 o6 4.9 21.8 43.5 0.74 0.17 0.033 

increasing disagreement occurs at higher densities because of a bad description of the 
electron trajectory. So we have built our model where all quantum effects are included 
in the derivation of the trajectory from the pseudo-potential. In § 5 ,  we will discuss 
the validity of this assumption, especially at intermediate distances r 

In § 2, we present the Slater sums method and their calculation using binary 
Coulomb functions. The effective potential is numerically deduced in order to describe 
the electron-proton collision classically. The Larmor formula gives an analytical form 
of the total radiated energy with the approximation of a straight line trajectory. A 
spectral analysis of this radiation is then performed and shows two main features by 
comparison with the classical bremsstrahlung model: a low-frequency higher maximum 
and a more rapid decrease at high frequency. As a conclusion we discuss the validity 
of our model and possible improvements by using high-order interactions, especially 
three-body collisions. 

AB. 

2. Calculation of the effective potential 

In statistical mechanics, the probability density to find an N-particle system in the 
{ r l ,  r2, . . , rN} configuration is given by 

wN(rl ,  *2,. . * 9 rN)= Q i i S N ( r l ,  r2,. * * 7 rN) 

where QN is the configuration integral 

QN = ( N ! h i N ) - '  1 exp(-pUN) d3rl . . . d 3 r ~ .  

UN represents the interaction energy of the N-particles system, A B  is the classical 
de Broglie wavelength and SN( r l ,  r2,. . . , rN)  is called the Slater sum of the system 
(Munster 1974, ch VI). 

S N  is the quantum analogue of the classical Boltzmann factor exp(-@U) and can 
be written using the state vector i,bn(rl, r2, . . . , rN) 

SN(ri, r2,. ' .  , r N )  = N!hiN 1 lJln(rl, r2,. . , rN)I2  exp(-pEn). 

Using only binary Slater sums, Ebeling et a1 (1968) and Minoo et a1 (1981) have 
extended this formalism to completely ionised plasmas of protons (p)  and electrons (e). 

In this frame, we define a proton-electron effective potential 

n 

by 
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In the centre-of-mass coordinates, the binary Slater sum becomes 

Spe(r) = 8 7 7 3 ’ 2 ~ i e  C Iqk(r)12 exp(-PE,) (2) 

using II, the reduced mass of the system, and Ape = h [ p / ( 2 ~ . ~ ) ] ” ~ ,  the equivalent thermal 
wavelength. As the plasma is supposed completely ionised, we can neglect bound 
states in the radiation calculus and we use only the Coulomb wavefunctions of the 
continuum (Landau and Lifshitz 1970) 

k 

q k ( r ) =  y?& (P)Rk(r), Ek = h2k2/(2p) 3 0. 

After performing the partial waves expansion of the radial function Rk( r) equation 
(2) becomes 

m 4kaoexp(-Aiek2) 
Spe(r) = ~ T ” ~ A ; ~  a i 3  (21+1) 

I = O  

(2kr)2’ IF(l+ 1 +i/kao, 21 +2,2ikr)I2 d(kao) . 1 X 
[(21+ 1)!]2 

To obtain a more tractable expression, we introduce the following set of variables 
(Ebeling et a1 1968) 

x = Xp,k, t = 2xpe/ao= / , /Ape,  P = r/Ape, 

where a, is the Bohr radius, 1, the Landau length and 6 the interaction parameter 
which measures the ratio of the electrostatic potential energy to the kinetic one at a 
distance Ape, 

IF(/  + 1 +i5/2x, 21 +2, 2ixp)I2 dx  , 1 X (2XPI2‘ 
[(21+ 1)!]2 

The F ( a ,  y, z )  function is the confluent hypergeometric series that converges for all 
finite z if y is non-zero. According to (3), the binary proton-electron Slater sum can 
be approximated for p < 1 by the expansion 

i = O  

wher the coefficients c, are simply expressed using integrals J , ( t ) .  (See appendix 1 for 
detailed expressions of these quantities.) According to this expansion, we have 
performed a numerical calculation of the binary Slater sums S,, at distances between 
0 and Ape and in the range of temperature 55 eV< T < 200 eV. The lower limit for T 
corresponds to the highest possible value of the interaction parameter (t= 1 )  and the 
higher limit ( 6  = 0.5) separates the region where the plasma is a kinetic one. Following 
equation ( l ) ,  the effective potential 4pe = - k,T In( Spe) was available as temperature- 
dependent sets of data. 

In order to derive the radiation from 4pe, we needed an analytical formula, fitting 
well with the data and quite easily tractable. These conditions were fulfilled by a 
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four-parameter expansion deduced from the Coulomb potential 

- 4 p e ( r )  = XI + X , / ( r + N  + X 3 / ( r + N 2 ,  r X p e ,  
(4) 

The parameters X I ,  X, ,  X , ,  A are temperature dependent and calculated by a least 
squares approximation from each set of potential data (20 to 50 points). 

Table 2 contains these parametric values for typical temperatures of the plasma. 
We can observe that the effective potential is quite different from the Coulomb potential; 
mainly it takes a finite value at null distance. This feature is now currently used but 
here we must note that it occurs without special hypothesis, only as a consequence of 
the quantum terms in Slater sums. A characteristic length of appears to be the 
spatial extent of the electron Xpe. It measures the range of the potential and also 
constitutes a reference for the other typical lengths of the plasma. Comparison with 
the Landau length ld separates the conditions where electrons are in ionic Coulomb 
fields (5 >> 1 )  and the present case (5s 1)  without localisation. Outside the convergence 
disc ( r  > Xpe), we assume that the whole environment contributes to building a constant 
potential. This is a first approximation but quite sufficient because we will see in 0 3 
that the trajectory is very slightly sensitive to the potential even where it is steep. 

#Jpe(r) = 4 p e O ( p e ) ,  r > Xpe. 

Table 2. Calculated parameters of the effective potential in the whole temperature range. 

6 x IO' 1.03 0.51 1.32 4.73 1.40 0.73 
7 x IO' 0.95 0.47 I .49 5.48 1.68 0.76 
8 x 10' 0.89 0.44 I .63 6.17 1.95 0.78 
9 x I O 5  0.84 0.42 1.77 6.82 2.20 0.80 
1 o6 0.80 0.40 1.89 7.43 2.44 0.82 
1.5 X IO6  0.65 0.33 2.40 10.10 3.48 0.87 
2 x IO6 0.56 0.28 2.76 12.16 4.38 0.90 

3. Path and radiation of an electron 

We have seen in § 1 the validity of calculations using an effective potential (which 
includes quantum effects) as a classical one, especially the interpretation of F = -Vdpe 
as a classical mechanical force. The e-p interaction can be treated by solving the 
motion of an electron under the central force F. The equation of motion (Goldstein 
1950) 

p u = [ X 2 / ( r + A ) 2 + 2 X 3 / ( r + A ) 3 ] r / r  (5) 
is numerical solved by means of an iterative Runge-Kutta method. Even for the lowest 
temperatures or for small impact parameter, the trajectory may be considered as a 
straight line. The deviation does not exceed 5% of the impact parameter b. Figure 1 
recalls the collision geometry. 

The total energy radiated during the e-p collision is classically given by the Larmor 
formula 
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\ 
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\ 
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Figure 1. Scheme of the electron-proton collision 

in which l t j l  can be implicitly expressed following (5). The conservation of the angular 
momentum provides a relation d t  = r' de/(u,b); as the electron trajectory can be 
approximated to a straight line b = r sin 6 the total energy is simply given by 

where 

TT (sin dB 
( b  + A  sin e) " '  I n  = i, 

The 14, I ,  and I6 integrals are given in appendix 2 .  

about the radiation mechanism. So we will prefer to study the power spectrum. 
We can note that the total energy is finite, but a global value hides much information 

4. Emission power spectrum 

In order to calculate the spectral distribution of the emitted power, it is convenient to 
separate the electron acceleration into two components, a longitudinal one dll  = v cos 6 
along the trajectory, and  a transverse one U, = U sin 8. The angular variable 8 (between 
0 and T )  may be introduced beneficially, using the relations seen previously in § 3 .  It 
is then possible to take r = -cot 0 = uot /  b as a reduced time and  to write, putting 
To = ( 1  + 72)"*, 

x2 7 dl1 = - 2x3 + 2X3 r x2 U, = 

A numerical Fourier transform of these quantities is performed following the general 
formula 

- 
To(bTo+A)2 T0(bT0+A)3' To(bT0+A)' T0(bT,+A)3' 

+3c 

cp(v)=  u ( 7 )  exp(-i2nvr) d r  
--r 

and the power spectrum, as a function of the reduced frequency, becomes 

Easier comparisons are possible with other results (Shkarofsky er a1 1966) if we use 
the reduced pulsation w = 27rv, that leads simply to P, = P u ( 2 n ) - ' .  Moreover, the 
potential parameters have been used in Hartree units (cf § 2 )  in order to work with 
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10 

numbers quite near unity; that introduces a unit Po which is temperature dependent 
via b and vo: 

I I 1 I I I I 

2e2 1 b e* 
3 2  h s O  mo 4?rsoaip' 

P 0- --x-x-x 

Figure 2 shows that an increase of temperature causes an increase of the whole 
spectrum especially around the low-frequency maximum ( w b /  vo = 0.15). At a given 
temperature (figure 3) a shorter impact angle displaces the maximum of the spectrum 

lo' 0 1 0 1 2 1 '  0.4 I 0.6 I "  0.8 1.0 
Reduced frequency w b  IV ,  

Figure 2. Calculated power spectra against reduced frequency for increasing temperatures 
from 6 x 10SK to 1.4 x 106K and an impact angle Bo = 9 ~ / 2 0 .  Curve A, 6 x 10SK; B, 7 x IO'K; 
C, 8 X IO'K; D, 9 X 10'K; E, 106K; F, 1.1 X 106K; G, 1.2 x 106K; H, 1.3 x 106K; I, 1.4 x 106K. 

400 Ln I I I I 

3 d ,g 
D 

a: x 201 

-1 
400 - I I I I I I I 

- 

- 

d -  
40- 

D 
8 2 20- 
a: 

Reduced frequency wblv ,  

Figure 3. Effect of the impact angle Bo on the calculated power spectrum at T = 106K. 
CuNe A: 8,=T/4, CUNe B: B o = 9 ~ / 2 0 .  
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and also increases its height. These results are consistent with the corresponding 
variations of the electron extent and of the collisional kinetics: the lower the temperature, 
the greater the size of the electron and the smoother the collision. 

An interesting comparison is provided by figure 4 where we draw, in the same 
conditions of temperature and geometry (small angular deviation), the common 
bremsstrahlung radiation (Shkarofsky er af 1966) and our results. Shkarofsky et al 
have achieved an integration along a hyperbolic trajectory and obtained a flat spectrum. 
The low-frequency maximum is quite at the same place ( w ~ / u O =  0.2) and lower (-20 
to -30%) but a dramatic difference appears at higher frequencies ( w b / u o >  0.5) where 
our spectrum decreases very rapidly. As a consequence, we must note the integrability 
of our spectrum over all frequencies. A very simple comparison can be made at zero 
frequency where the classical bremsstrahlung is equal to 4( ao/ b)4P0. 

10 
0 0.2 0.4 0.6 0.8 1.0 

Reduced frequency w b l v o  

Figure 4. Comparison of calculated power spectra in the same conditions ( T =  1.1 x 106K, 
6,  = 9 ~ / 2 0 )  using our model (A) and the classical bremsstrahlung (B). 

5. Conclusion and prospects 

We have shown the validity of using a pseudopotential to calculate the radiation 
emitted by a dense plasma with quantum effects. We can note that the previous results 
are quite similar to ours. As the former have been used up to now without major 
trouble, it is a confirmation of our calculations. But the first approximation of e-p 
binary short-range pseudopotential, including not only quantum effects but density 
effects, is still questionable. 

We have neglected multipolar radiations coming from e-e collisions because their 
calculation is very intricate and it seems that their contribution is not significant. A 
real problem arises from intermediate distance configurations where no particular 
neighbour can be isolated. We have assumed a mean constant potential which is only 
the first approximation of the sum of all the contributions, continuously perturbed by 
the dynamics of the particles in the medium. This question is still open and deserves 
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more attention. We must also take care of long-distance interactions where few electrons 
may intercalate between interacting particles: further results will be soon presented 
that take into account three-body interactions, mainly p-e-p and e-p-e. 

Appendix 1. Power expansion coefficients for the Slater sum 

J , , ( t )  = lo+= x"[l -exp(-.rr&/x)]-l exp(-x2) dx, 

- L  2 c0 = 4.rr'/'5J1(5), CI = -5c0, 2 - 2 5  CO, 

3 - [-5t4Jl(5) +4t2J3(t)1/9, - . r r l i 2  

~4 = .rr1/*[75'J1( 5) - 2Ot3J3( 01/72, 

~5 = ~'/*[-215'J1(5) + 140t4J,(t) -64t2J5(()]/ 1800, 

c6= T"2[1 1t7J1(5) - 14055J,(5) +224t3J5([)]/10800. 

Appendix 2. Values of l,, Is and I ,  integrals 

Putting 

the integrals used in the calculation of the total energy can be expressed as follows: 

3211 6:tA(2L2 i) b -4A 
I - -+- - 9 6 7 A ,  

3Ab3 5A 4 -  

128A2 16 4h2  1 640bA2 3 2A2 I -- +--+- +--+? -+- 
5-81Ab5 Ab3(7b2 3) 3A3 (2  b )(2b2 i) 

- 
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